DAO Office Note 9602

Office Note Series on
Global Modeling and Data Assimilation

Richard B. Rood, Head
Data Assimilation Office
Goddard Space Flight Center
Greenbelt, Maryland

Documentation of the Physical-space

Statistical Analysis System (PSAS)
Part I: The Conjugate Gradient Solver
Version PSAS-1.00

Arlindo da Silva*
Jing Guo 1

Data Assimilation Office, Goddard Laboratory for Atmospheres
* Goddard Space Flight Center, Greenbelt, Maryland

t General Sciences Corporation, Laurel, Maryland

This paper has not been published and should
be regarded as an Internal Report from DAQO.

Permission to quote from it should be

obtained from the DAQ.

Goddard Space Flight Center
Greenbelt, Maryland 20771

February 1996

Abstract

This document describes Version 1 of the conjugate gradient solver component of
DAQ’s Physical-space Statistical Analysis System (PSAS). An overview of the general
PSAS algorithm is presented, followed by an outline of the pre-conditioned conjugate
gradient algorithm, and its implementation in PSAS. A description of the main For-
tran 90 subroutines related to the conjugate gradient solver is given, with the source
code listed in the Appendix.

This Office Note focuses on a particular aspect of the PSAS algorithm, namely the
conjugate gradient solver. The details of the observation and forecast error covariance
modeling, the strategies for parallelization and domain decomposition, data flow and
user inetrface will be described in subsequent DAO Office Notes. The emphasis of this
document is on software design and implementation, and not on the scientific aspects
of PSAS which will be documented elsewhere. An on-line version of this document can
be obtained from

ftp://dao.gsfc.nasa.gov/pub/office_notes/on9602.ps.Z (postscript)

ftp://niteroi.gsfc.nasa.gov/wuw/on9602/0n9602.html (HTML)

Visit also the data Assimilation Office’s Home Page at

http://dao.gsfc.nasa.gov/

iii

Contents

Abstract 111
1 Introduction 1
2 Overview of PSAS 1
3 Overview of the Conjugate Gradient Algorithm 3
3.1 General Search Directions o oL 3
3.2 The Steepest Descent Algorithm 4
3.3 Conjugate Gradients L o e 5
4 Choice of pre-conditioner in PSAS 6
5 Fortran 90 implementation of the PSAS Conjugate Gradient Solver 8
5.1 The main PSAS driver: getAlall() 9
5.2 Getting ready for the conjugate gradient: solvedx() 9
5.3 The main conjugate gradient driver: cg-main() 10
5.4 Pre-conditioner level 2: cglevel2(), 10
5.5 Pre-conditioner level 1: cglevell() 10
6 Concluding remarks 11
Acknowledgments 11

A Appendix: PSAS Conjugate Gradient Solver prologues and source code 12

Appendix: PSAS CG prologue and source code 12
Al getAlall() . . . oL 12
A2 getAlallO() 21
A3 solvedx() . . o oL 27
Ad solvedx0() . . . o oo 32
ADB cgmmain() ... 34
A6 cglevel2() . . oL 42
AT eglevell() . ..o oo 51
A8 cgblocks() 59
A9 egleveld() oo 62

References 65

iv

1 Introduction

The central mission of the Data Assimilation Office (DAO) is to develop a state-of-the-art
Data Assimilation System capable of assimilating relevant remotely-sensed data from the
Earth Observing System (EOS) platforms, as well as global atmospheric data from the other
observing systems. The Physical-space Statistical Analysis System (PSAS) is a component
of the Goddard EOS Data Assimilation System (GEOS/DAS) which implements a global
statistical interpolation algorithm in physical rather than spectral space. This analysis
system is a successor to our current Optimal Interpolation-based system (Pfaendtner et
al. 1995) used to produce the GEOS-1 Multiyear assimilation (Schubert et al. 1993, 1995a,b).
An overview of PSAS and comparisons with the Optimal Interpolation System used in
Version 1 of GEOS/DAS can be found in da Silva et al. (1995), while some computational
aspects of PSAS are discussed in Guo and da Silva (1995).

The purpose of this report is to document the software implementation of the global conju-
gate gradient solver in PSAS. The details of the observation and forecast error covariance
modeling, the strategies for parallelization and domain decomposition, data flow and user
interface will be described in subsequent DAO Office Notes.

The organization of this document is as follows. In section 2 the mathematical formulation
of PSAS is introduced, with a brief overview of the whole algorithm. Section 3 describes the
numerical aspects of the pre-conditioned conjugate gradient algorithm adopted in PSAS.
The actual pre-conditioners used in PSAS are introduced in section 4, while section 5
provides an overview of the tasks performed in each major conjugate gradient routine.
The actual Fortran 90 source code along with prologues appear in the Appendix. In the
acknowledgments we present brief historical notes on PSAS design and development at

DAO.

2 Overview of PSAS

One of the main design goals of PSAS is to provide a flexible analysis system for the assim-
ilation of several new data types available during the EOS period. In addition, PSAS must
provide the framework to test advanced forecast error covariance models, such as generic
anisotropic models, and to support research on approximate Kalman filtering and smooth-
ing at DAQ. In view of this, PSAS is designed with very few assumptions on the structure
of the innovation covariance matrix. Although the current implementation uses a horizontal
correlation model which is homogeneous and isotropic, the numerical algorithm takes no
advantage of this simplification. In contrast, most current variational systems [ECMWEF’s
3D-VAR (Courtier et al. 1993), NMC’s SSI (Parrish and Derber 1992)] depend heavily on
this assumption for computational feasibility. Other design goals are the elimination of data
selection, and a fully global analysis system which could easily handle non-conventional data
types such as satellite radiances.

PSAS implements the statistical analysis equations in physical rather spectral space. The
computational advantage of a spectral formulation is tied to the assumption of isotropic
horizontal error correlation structures, an assumption we would like to relax in the near
future. In addition, PSAS analyses are compatible with the GEOS General Circulation
Model which is formulated in grid-point space.

Formulation

Although a non-linear version of PSAS is planned, we focus our discussion on the linear
aspects of the algorithm. The non-linear PSAS algorithm in consideration consists of iter-
ations based on linear PSAS solutions.

A statistical interpolation scheme attempts to obtain an optimal estimate of the state of the
system by combining observations with a forecast model first guess. Under a requirement
of optimality the analysis equation is shown to be (e.g., Daley 1991)

w, = ws+ K (w, — Hwy) (1)
-1
K = PHT(HP/HT + R) (2)

where w, € IR" is a vector representing the analyzed field, w; € IR" denotes the model
forecast first guess, and w, € IR? is the observational vector. The operator I is a generalized
interpolation operator which transforms model variables into observables. The matrix K =

~1
P/HT (HPfHT + R) is the so-called gain or the weights of the analysis. Typically,

the number of model degrees of freedom is n ~ 10° and the current observing system has
p ~ 10°. The analysis equations are solved approximately by our OI system: for each grid
point the weights in eq. (2) are computed with a reduced number of gridpoints p’ < p,
and eq. (1) is used to obtain the analyzed field. This method is clearly not feasible if all
observations are to be retained. The algorithm in PSAS consists of solving one p X p linear
system for the quantity y

(HPIHT + R) y = w, — Huy (3)
and subsequently obtaining the analyzed state w, from the equation
w, =ws+ PTHTY (4)

which is a matrix-vector multiply plus a vector addition, requiring no iterations. The
intermediate vector y will be referred to as the partially weighted innovations. The linear
system (3) is solved by a conjugate gradient algorithm which is documented in subsequent
sections.

For typical correlation models the innovation matrix M = HPTHT + R is not sparse,
although entries associated with grid points over several correlation lengths are negligibly
small. In order to introduce some sparseness in M and save computational effort, zeros
are introduced in M for entries corresponding to observational points distant by more than
6,000 km. For computational convenience, the sphere is divided in N regions, and matrix
blocks associated with regions distant by more than 6,000 km are set to zero. For the sake
of consistency and numerical stability, the tail of the correlation function must be adjusted
to exactly go to zero beyond a certain distance, usually 6,000 km. For information on the
construction of spatially limited correlation functions see Gaspari and Cohn (1996).

Clearly, a linear system of size 10° x 10° can only be solved by iterative methods. The system
(3) is solved by a standard pre-conditioned conjugate gradient (CG) algorithm (Golub and
van Loan, 1989). First, each row of M is normalized by the innovation variance (i.e., we
solve the problem with a correlation matrix instead of a covariance matrix). The system
is pre-conditioned by solving another CG problem subject to observations confined within
the boundaries of each one of the N regions. These smaller CG problems are in turn
pre-conditioned by solving smaller block-diagonal systems which are designed to include
full vertical observational profiles, as described in section 4. These block-diagonal systems

are directly solved using the Linear Algebra PACKage’s (LAPACK, Anderson et al. 1992)
Cholesky solver. In the serial implementation of PSAS, the normalized matrix M is provided
as an operator, and the elements of M are recomputed each CG iteration. In the parallel
implementation of PSAS being developed at the Jet Propulson Laboratory (R. Ferraro,
personal communication), blocks of the matrix M are pre-computed and stored in memory.
Details of the serial implementation of PSAS are given in sections 3 and 5.

As a convergence criterion for the CG solver we specify that the residual must be reduced
by 1 or 2 orders of magnitude. Experiments with reduction of the residual beyond 2 orders
of magnitude produced differences much smaller than the expected analysis errors. This is
mainly because of the filtering properties of the operator P/ H™ in (4) which attenuates the
small scale details in the linear system variable y.

3 Overview of the Conjugate Gradient Algorithm

This section describes the pre-conditioned conjugate gradient algorithm from a numerical
point of view; the algorithm adopted is given in Table 3. The choice of pre-conditioner in
PSAS is discussed in the next section, followed by a discussion of the current Fortran 90
implementation. Readers familiar with the conjugate gradient algorithm should proceed
directly to section 4.

Let M = HP/HT + R be the innovation covariance matrix. We start by normalizing the
linear system by the diagonal of M,

(D7' MDY (Dy) = D7 (w® — Hw') (5)
> Cr=b (6)

where D;; = \/M;;0;;. In this equation C' is the innovation correlation matrix. Following
Golub and van Loan (1989, hereafter referred to as GvL) we outline the standard pre-
conditioned conjugate gradient algorithm as implemented in PSAS.

We want to solve the linear system (6) where

b € IR (7)

C € IRPP (8)
with p ~ 10° being the number of observations. Since C is positive definite, solving Cz = b
is equivalent to finding # which minimizes the functional

J(z) = %xTCx — a1 9)

The general strategy is to devise an iteration which converges to the minimum of J(z) as
fast as possible.

3.1 General Search Directions

Consider the iteration k,
Tk = Tp—1 + QP (10)

where the step size a € IR is a scalar and p; € IR? is a vector defining a search direction
to be determined. It is easy to show that to minimize J(2;_1 + apy) with respect to a, we
merely set

T
PrTk-1
a=aqp = —S—— (11)
pFCpr
where r, is the residual
rr=0b—Cuy (12)
For this choice of @ we can show that
1 2
J(xp—1 + arpr) = J(2p-1) — 3 (sz‘kq) PLCpr (13)

Notice that to ensure the reduction of .J we must insist on pg not be orthogonal to ry_;.

3.2 The Steepest Descent Algorithm

The gradient of J(z) = 27 Cx — 2Tb with respect to z is given by

VJ| =Cuar—b=—r(zk) (14)

=Tk

The steepest descent algorithm looks for the minimum in the direction in which J(zy)
decreases most rapidly, i.e, down-gradient

pr=— VJ| =r(Tg-1) (15)

TE—1

GvL give an algorithm for finding the minimum of J(z) by the steepest descent method
which is reproduced in Table 1.

Table 1: Steepest descent search direction algorithm (Golub and van Loan, 1989)

k=0;20=0;7r90=0
while r; # 0

k=k+1

qr—1 = Crr_1

ap =ri_ra/rl g

Tk = Tp—1 + QpTE—1

Tk =Tk-1 — Qk—10%
end

A known drawback of this algorithm is that convergence is too slow for matrices with large
condition numbers (k2(C') = Anaw/Amin, Where X is the eigenvalue of C); in this case the
countours of J are elongated hyperellipsoids, and we are forced to travel back and forth
across a valley rather then down a valley (there is a good discussion in Press et al. 1992).
The conjugate gradient algorithm addresses this deficiency of the steepest descent method.

Table 2: Conjugate gradient algorithm (Golub and van Loan, 1989)

k=0;20=0;r0=0
while r; # 0
k=k+1
ifk=1{pi=ro}
else {), = rkT—1rk—1/r£—2rk—2
Pk = Th=1 + BrPr-1 }
qx = Cpy
O = rg—1rk—1/l’£‘]k
Tk = Th—1 1+ Pk
Tk = Tk—1 — OkGk
end

3.3 Conjugate Gradients

Recall that
_ T 2 7
(i + axpr) = J(ora) = (1/2) (pEres) pECpy

To avoid the problems we encountered with the steepest descent algorithm, we would like to
make sure we always travel in a direction perpendicular to the directions already traveled.
Mathematically, we would like

prCpr=0, j<k (16)

and, of course, we must have pzrk_l # 0 to ensure that .J decreases in each iteration (see
eq. 13). The following choice has this property

T
pk_1crk—1
Pk =Tk—1— 7 5 Pk-1 17
p£_1cpk—1 ()
It can be shown that
J(zy) = min{.J(z)|z € span{py,---,pr}} (18)

which guarantees global convergence and finite termination. Using a few identities (see
GvL) we arrive at the algorithm given in Table 2.

Pre-conditioned Conjugate Gradients

The conjugate gradient converges as follows

k
o= sulle < 2l - allo (Y7 (19

where ||z||% = tTCx,and k = Anae/Amin is the condition number. So, convergence can be
slow for large condition numbers!. In order to improve convergence we seek a transformation

'In practice, the early convergence rate depends on an effective condition number which is related to the

smoothness of the RHS.

Table 3: The pre-conditioned conjugate algorithm as implemented in PSAS (Golub and van
Loan, 1989)

k=0;20=0;r9g=0
while r; # 0
solve C’zk = rp ! C = A% preconditioner
matrix
k=k+1
iszl{plz,ZO}
else { 3 = rkT—1Zk—1/rg—2Zk—2
Pk = Zk—1 + BrPr—1 }
qr = Cpr
ap =zl /piay
Tk = Th—1 1+ Pk
Tk =Tg—1 — Orqg
end

of the original matrix C of the form,
C=A1'cA! (20)
where the matrix A is to be determined. Rather than solving C'z = b we solve

(A'ca™)Ae =47 or Cz=0 (21)

If A2 ~ (' then C ~ I, and the conjugate gradient converges very fast because x(C) ~ 1.

However, C' = A? must be simple enough for the algorithm to be cost-effective. Usually
the pre-conditioner is obtained by solving a simplified version of the problem. The pre-
conditioned conjugate gradient algoritm implemented in PSAS is given in Table 3. The
pre-conditioner amounts to solve an extra linear system A2z, = r, every iteration. Notice
that the major cost of each iteration is the matrix vector multiply operation C'pg. Therefore,
the flop counts for this algorithm scales as ~ p? , i.e., it scales as the square of the number
of observations.

The choice pre-conditioners implemented in PSAS is discussed in the next section.

4 Choice of pre-conditioner in PSAS

The first step consists of dividing the globe into N non-overlaping geographic regions, and
sorting the observations by region and data-type. For the Cray C-90 implementation we
divide the globe in 80 equal-area regions using a icosahedral grid (Pfaendtner 1996). In the
Massive Parallel implementation of PSAS being developed at JPL the globe is divided in
256 or 512 geographically irregular regions, each having approximately the same number of
observations. This strategy is necessary to achieve load balance. The domain decomposition
in PSAS is user specified and the different options will be documented elsewhere.

A good pre-conditioner must have two important characteristics: 1) it must be cheap to com-
pute, and 2) it must retain the essentials of the original problem if it is to effectively improve

the convergence rate of the algorithm. In fact, when we normalized the original problem by
the innovation standard deviations, we indeed performed an implicit pre-conditioning. In
this case the pre-conditioner approximates the original matrix by its diagonal.

a N

full matrix
regional diagonal PSAS
AL
cg_main() univariate diagonal
- ‘
cg_level2()
profiles diagonal
cg_levell()
Nested Pre-conditioned
Conjugate Gradient Solver
19 SPPTRF + SPPTRS

- v

Figure 1: PSAS nested pre-conditioned conjugate gradient solver. Routine cgmain() contains
the main conjugate gradient driver. This routine is pre-conditioned by cg_level2(), which solves
a similar problem for each region. This routine is in turn pre-conditioned by cg levell() which
solves the linear system univariately. See text for details.

For the statistical interpolation problem that PSAS implements, a natural candidate for
pre-conditioner is an Ol-like approximation, in which the problem is solved separately for
each of the N regions we used to partition the data. With p ~ 100,000 observations and
N ~ 80 regions, each os these regional problems would have on average more than 1,000
observations, still too many observations for an efficient pre-conditioner. These regional
problems are also solved by a pre-conditioned conjugate gradient (CG) algorithm; internally
we refer to this solver as the CG level 2. As a pre-conditioner for C'G level 2 we solve
the same problem univariately for each data type, i. e., observations of w-wind, v-wind,
geopotential height, etc., are treated in isolation. However, these univariate problems are
still too large to be efficiently solved by direct methods and another iterative solver is used;
this is the C'G level 1 algorithm. As a pre-conditioner for CG level 1 we use LAPACK
(Anderson et al. 1992) to perform a direct Cholesky factorization of diagonal blocks of
the level 1 correlation sub-matrix. These diagonal blocks are typically of size 32, and are
carefully chosen to include full vertical profiles, a desirable feature for the implementation
of new data types. These nested pre-conditioned conjugate gradient solvers are illustrated
in Figure 1.

5 Fortran 90 implementation of the PSAS Conjugate Gradi-
ent Solver

In this section we discuss the main Fortran 90 drivers implementing PSAS’s nested conjugate
gradient solver. Intentionally, we will not discuss the details of the covariance matrix-vector
multiply, i.e., the step gx = Cpy in the algorithm shown in Table 3; this complex aspect of
the PSAS algorithm will be documented in a separate Office Note. A block diagram of the

PSAS Fortran 90 Driver

getAlall()
getAlallo() solvedx() getAinc()
solve4x0() cg_main() Conjugate Gradient
Driver
cg_level2() Regional
Pre-conditioner
Univariate
cg_levell() Pre-conditioner

Figure 2: Block diagram of the higher level PSAS modules. The shaded blocks are not discussed
in detail in this document.

modules discussed in this document is given in Figure 2; source code listing and prologue
appear in the Appendix. The shaded blocks in Figure 2 are shown only for completeness;
their description requires details of the covariance modeling sub-system which we do not
discuss in this document.

As our starting point, we will assume that quality-controlled innovations are available, and
we will discuss how the partially weighted innovations y (eq. 3) are computed. The actual
calculation of the analysis increments requires the matrix-vector multiply P/ H 'y (eq. 4)
which cannot be discussed without going into the details of the error covariance modeling.
For this reason, the module getAinc() shown in Figure 2 will be discussed in a separate

Office Note.

5.1 The main PSAS driver: getAlall()

This current version of this routine starts by perfoming a number of pre-processing tasks
which eventually should be moved to the data ingestion section of GEOS/DAS; we have
isolated this code segment inside the internal routine psas0(). Among these tasks are the
partition of observations into regions and sorting (routine sort()). The following keys are
used in the sorting of data

e region index

e data type index (kt)

data source index (kx)

e latitude

longitude

level

After sorting, the first segment of the observation vectors will have data for region 1, then
region 2, up to region N (although some regions may be empty). Inside each region all
data with k£t = 1 will be grouped together, then kt = 2, and so on. This sorting of the data
is dictated by the strategy used for pre-conditioning described in the previous section. All
routines below this point assume this sorting of the data.

Note: The current PSAS interface to GEOS/DAS is based on a customization of routine
getATall which processes observations and produces analysis increments in 3 separate
batches, namely

surface: sea level pressure and surface winds, routine getAIpuv()
upper-air wind /mass: geopotential height and winds, routine getAIzuv()

upper-air moisture: mixing ratio, routine getAImix()

Because the focus of this document is on the conjugate gradient solver, we have chosen
to start the PSAS driver from getAIall(). This interface is currently only used in the
stand-alone PSAS implementation, and will eventually become the preferred GEOS/DAS
interface.

5.2 Getting ready for the conjugate gradient: solvedx()
The internal routine solve4x0() performs several initializations, including

e Computes (z,y, z) cartesian coordinates on the unity sphere corresponding to the
(lat,lon) of the input observations. These cartesian coordinates are used by the co-
variance modeling subsystem to compute horizontal distances.

e Computes the sounding index of the observations (da Silva and Redder 1995).
e Set interpolation indices and weights.

e Normalizes observation and forecast error standard deviations (by the innovation stan-
dard deviation).

This routine also performs normalization by the innovation standard deviation to transform
the system to the form C'z = b which is then handled by the conjugate gradient solver
cgmain().

5.3 The main conjugate gradient driver: cg_main()

This routine does a straightforward implementation of the pre-conditioned conjugate gradi-
ent algorithm given in Golub and van Loan (1989) and reproduced in Table 3; even variable
names have been chosen to closely follow the book notation (with the exception perhaps,
of the matrix name which we use C' instead of A). The Basic Linear Algebra Subprograms
(BLAS), which are often hand-coded in assembler and provided by several vendors, are used
to perfom the basic linear algebra operations such as dot products, norms, vector additions,
etc. The pre-conditioner for this routine is implemented in routine cg-level2(). The
most costly portion of this routine is the global correlation matrix-vector multiply (routine
sCxpy) which will be documented in a separate Office Note.

5.4 Pre-conditioner level 2: cg_level2()

This routine has a structure very similar to cgmain(). The main difference is how the
pre-conditioner is invoked. Recall that as a result of the data sorting, within each re-
gion the observations are sorted by data-type (e.g., sea level pressure, heights, u-wind, etc.
are all grouped together). The pre-conditioner for this routine is implemented in routine
cg-levell() which acts on each of these (univariate) data-type vector segments indepen-
dently. In order to achieve multi-tasking on the Cray C90, this routine includes compiler
directives to perform pre-conditioner operations for each data-type segments in parallel.

5.5 Pre-conditioner level 1: cg_levell()

The general structure of this routine is again similar to cgmain(). However, at this level
the correlation block sub-matrices are explicitly computed and stored (see internal routine
cg-blocks(). The pre-conditioner is now implemented in cg_levelO(). This internal
routine indentifies blocks of the correlation sub-matrix which contain full vertical profiles.
The number of profiles is user specified; typical values are 2 or 3. A direct Cholesky solver
is performed on these blocks using LAPACK (Anderson et al. 1992). This Cholesky solver
is typically performed on matrix of size 32 x 32.

10

6 Concluding remarks

As of this writing the PSAS system is undergoing major revisions in its fundamental mod-
ules. In particular, the error covariance modeling sub-system is being updated to allow more
general models (for example, non-homogeneous, non-separable correlation models), and an
infra-structure for dealing with complex data-types (e.g., radiances, total precipitable wa-
ter) is being developed. In this document we have concentrated on the conjugate gradient
solver component of PSAS. Although some revisions in these modules will be necessary as
we expand some of the data structures, they will almost certainly only involve interface
changes. The general structure of the algorithm appears robust and is not expected to
change.

Acknowledgments

The original proposal for a global, physical-space statistical analysis system to replace
DAOQO’s Ol was made by S. Cohn (1991, manuscript notes). A Fortran 77 version of PSAS was
designed and implemented by the late Jim Pfaendtner during 1992-93 on his workstation.
Jim Searl implementate a preliminary (univariate) version of the error covariance routines.
Meta Sienkiewicz wrote the original wind-mass covariance routines and implemented the
moisture analysis. David Lamich wrote the main interface to PSAS on the GEOS/DAS
end (internally referred to as the “plug-version”). We would like to acknowledge their
contribution and consistent encouragement during the course of this project. Thanks also
to Ricky Rood (head of DAO) for overall support, and to Jim Stobie for his continued
encouragement of our documentation efforts.

A formal technical review of this document was conducted on February 26, 1996 at the Data
Assimilation Office. We would like to thank Meta Sienkiewicz (review leader), Genia Brin
(recorder), David Lamich and Peter Lyster (reviewers) for valuable suggestions. Thanks
also to Ricardo Todling for proofreading the manuscript.

11

A Appendix: PSAS Conjugate Gradient Solver prologues
and source code

A.1 getAlall()

Given innovation (observation minus forecast) data, this routine returns the analysis in-
crements (analysis minus first guess) using the Global conjugate gradient algorithm im-
plemented in PSAS. Basically, the calculation is performed in 2 stages. First, a global,
pre-conditioned conjugate gradient solver is used to solve for y in the equation

(HP'HT + R)y = w° — Huw'

where w® — Hw/ is the innovation. Notice that y is defined in observation locations. Sub-
sequently, the gridded analysis increments dw, are computed from y by the matrix-vector
multiply

Sw, = P HTy

CALLING SEQUENCE:

call getAlall (nobs, lat, lon, pres,
time, kx, kt, dels,
sig_F, sig_0,
im, jnp, mlev, pres_lev,
psl_sigF, usl_sigF, vsl_sigF,
z_sigF, u_sigF, v_sigF, mix_sigF,
psl_inc, usl_inc, vsl_inc,
Z_inc, u_inc, v_inc, mix_inc,
psl_sigh, usl_sigh, vsl_sigh,
z_sigh, u_sigh, v_sigh, mix_sigh)

PRI

INPUT PARAMETERS:

use 0OEclass_tbl, only : nlev_oe, plev_oce

implicit NONE

integer nobs ! number of observations

real lat(nobs) ! latitude (deg) of each obs

real lon(nobs) ! longitude (deg) of each obs

real pres(nobs) ! pressure level (hPa) of obs

real time(nobs) ! time (minutes) from central
! synoptic time

integer kx(nobs) ! GEOS/DAS data source index

12

GEOS/DAS data type index
innovations (O-F)

forecast error stdv

observation error stdv (no longer
used (t. b. r.)

nobs, kx, kt, dels, sig_F & sig_0 are updated during

no. of zonal grid-points
no. of meridional gridpoints
no. of vertical grid-points

list of vertical levels (hPa)

The arrays below with suffix
_sigF are gridded forecast error
standard deviations for:

sea level pressure (hPa)
surface u-wind (m/s)

surface v-wind (m/s)

upper-air u-wind (m/s)
upper-air v-wind (m/s)
geopotential height (m/s)

o 0O 0 00 0 O0

integer kt(nobs)

real dels(nobs)

real sig_F(nobs)
real sig_0(nobs)

! NOTE

! the super-obing (routine proxel()).
integer im

integer jnp

integer mlev

real pres_lev(mlev)
real psl_sigF(im, jnp)

real usl_sigF(im, jnp)

real vsl_sigF(im, jnp)

real u_sigF(im, jnp,mlev)
real v_sigF(im, jnp,mlev)
real z_sigF(im, jnp,mlev)
real mix_sigF(im, jnp,mlev)

OUTPUT PARAMETERS:

real psl_inc(im, jnp)
real usl_inc(im, jnp)
real vsl_inc(im, jnp)
real u_inc(im, jnp,mlev)
real v_inc(im, jnp,mlev)
real z_inc(im, jnp,mlev)
real mix_inc(im, jnp,mlev)
real psl_sighA(im, jnp)
real usl_sigA(im, jnp)

13

mixing ratio (g/kg)

The arrays below with suffix
_inc are gridded analysis
increments for:

sea level pressure (hPa)
surface u-wind (m/s)
surface v-wind (m/s)
upper-air u-wind (m/s)
upper-air v-wind (m/s)
geopotential height (m/s)
mixing ratio (g/kg)

o 0O 0 0O 0 0 o

The arrays below with suffix
_sigh are gridded analysis error
standard deviations for:

o sea level pressure (hPa)

o surface u-wind (m/s)

real vsl_sigA(im, jnp) ! o surface v-wind (m/s)

real u_sigA(im, jnp,mlev) ! o upper-air u-wind (m/s)
real v_sigA(im, jnp,mlev) ! o upper-air v-wind (m/s)
real z_sighA(im, jnp,mlev) ! o geopotential height (m/s)
real mix_sigA(im,jnp,mlev) ! o mixing ratio (g/kg)

Return status:

<none> : The subroutine may exit with a non-zero status through
a call to PSASexit() when an error condition is
detected. In such cases execution is aborted.

BUGS:
The super-obing alters the value of observations in
violation of the 0ODS standard. No known side effects,
but this should be fixed.

SEE ALSO:

solve4x() interface to conjugate gradient routines.
stdio.h include file defining stdandard I/0 units
BLAS basic linear algebra sub-programs

SYSTEM ROUTINES:

getenv(3f) UNIX interface returning the value of an
environment variable (PSASRC here).

FILES USED:

stdrc a unit number allocated when the subroutine is in use,

14

for the input of control parameters and data tables.

REVISION HISTORY:

ddmm95 Lamich/Guo Interface design.

ddmm95 Guo Initial code.

04Jan96 da Silva Revised prologue, major clean-up.
Removed IFDEFs about dynamic allocation. Code
now requires Fortran 90 for portability.
Introduced getAIallO() as internal routine.

SOURCE CODE:

character*8 myname ! Name of routine for error messages
parameter (myname=’getAIall’)

! Local functionality controls

logical want_usl
logical want_vsl
logical want_psl
logical want_u
logical want_v
logical want_z
logical want_mix

parameter(want_usl=.true.)
parameter(want_vsl=.true.)
parameter(want_psl=.true.)
parameter(want_u =.true.)
parameter(want_v =.true.)
parameter(want_z =.true.)
parameter(want_mix=.true.)

real sigFmiss
parameter(sigFmiss=1.e+15)

integer nnobs
integer mn,ier
integer nprox

! Experiment ID and date/time: debris t.b.r.

character*9 c9date

15

character*8 c8time

Control parameters for conjugate gradient iterations

logical verbose
parameter (verbose = .true.)

Basically debris from left over from JimPf time

integer idelprb
integer idelpre
integer idelpri

parameter (idelprb
parameter (idelpre
parameter (idelpri

250) ! beg to print dels
20000) ! end to prind dels
250) ! increment to print del

logical prtdatil
parameter (prtdatl = .false.)
integer ntwidth
parameter (ntwidth = 30000)

Size parameters for database

types for which we produce
analysis increments.

include ’maxreg.h’ ! maximum number of regions
include *kxmax.h’ ! maximum numer of data sources
include ’ktmax.h’ ! maximum number of data types
include ’ktwanted.h’ ! data structure defining data
|
1

Regional (domain) decomposition maps used in PSAS

integer iregbeg(maxreg) ! pointers to beginning of regions
integer ireglen(maxreg) ! the no. of obs. in each region
integer ityplen(ktmax,maxreg) ! sizes of type blocks

Storage for data items (dynamic allocation)

real sig_Ou(nobs) ! spatially uncorrelated portion of
! obs error stdv

real sig_Oc(nobs) ! spatially correlated portion of
! obs error stdv

real xvec(nobs) ! Conjugate gradient solution
|

at obs location

16

logical k1(nobs) ! debris t. b. r.

include ’1lvmax.h’ ! maximum no. of levels for internal tables
include ’levtabl.h’ ! vertical level tables for interpolation
! of correlation functions, etc.

include ’stdio.h’ ! standard I/0 units
integer 1, 1

integer n2grd, n3grd

integer stdrc

integer luavail, 1nblnk

external luavail, 1lnblnk

external psasrcbd ! a blockdata unit
include ’psasrc.h’ ! a default psasrc file name

Up to this point we have done a bunch of pre-processing
to prepare the internal data structures (forecast and
observation correlation tables, etc). Next we actually
do some real calculations for a change.

First, solve
(HP"fH'T + R) x = wo - Hw" f

for the vector x defined in observation locations.

call ZEITBEG(’solve4x ’)
call SOLVE4X (maxreg, iregbeg, ireglen, ityplen,

& nobs, kx, lat, lon,pres,
& sig_Ou, sig_Oc, sig F, 1,
& nobs, dels, xvec)

call ZEITEND

call OBSTAT (stdout, nobs, kx, kt, pres, xvec,
& nlev_oe,plev_oe,’getAIall*SolutionVector’)

17

PRI IIPIIIRIIRR

Next, obtain the gridded analysis increments from

\delta w_a = P°f H'T x

call ZEITBEG (’getAinc’)
call getAinc (verbose, stdout, nbandcg,

call ZEITEND

nobs, iregbeg, ireglen, ityplen, xvec,
lat, lon, pres, sig_F,
im, jnp, mlev, pres_lev,
usl_inc, vsl_inc, psl_inc,
u_inc, v_inc, z_inc, mix_inc,
ktwanted(ktus),
ktwanted(ktvs),
ktwanted(ktslp),
ktwanted(ktuu),
ktwanted(ktvv),
ktwanted (ktHH),
ktwanted(ktqq),
ier)

! getAinc

Error handling

if(ier.ne.0) then

write(stderr,’(2a,i4)’) myname,
. error from getAinc(), ’,ier
call PSASexit (2, myname)

end if

Scale the normalized analysis

if (ktwanted(ktus))
if (ktwanted(ktvs))
if (ktwanted(ktslp))
if (ktwanted(ktuu))
if (ktwanted(ktvv))
if (ktwanted(ktHH))
if (ktwanted(ktqq))

call
call
call
call
call
call
call

QVMV
QVMV
QVMV
QVMV
QVMV
QVMV
QVMV

increments returned by getAinc()

(usl_inc,usl_inc,usl_sigF,n2grd)
(vsl_inc,vsl_inc,vsl_sigF,n2grd)
(psl_inc,psl_inc,psl_sigF,n2grd)
(u_inc,u_inc,u_sigF,n3grd)
(v_inc,v_inc,v_sigF,n3grd)
(z_inc,z_inc,z_sigF,n3grd)
(mix_inc,mix_inc,mix_sigF,n3grd)

Print summary (means/std/min/max) of several grids

if (ktwanted(ktus).or.ktwanted(ktvs).or.ktwanted(ktslp)) then

write(stdout,’(/2a)’) myname,
>: Analysis-Increments of Surface Variables:’

18

if (ktwanted(ktus)) call LVSTAT (stdout,im, jnp,usl_inc,
0.,’WIND’,’SRFC’,1.e+15,°USL’)

if (ktwanted(ktvs)) call LVSTAT (stdout,im, jnp,vsl_inc,
0.,’WIND’,’SRFC’,1.e+15,°VSL’)

if (ktwanted(ktslp)) call LVSTAT (stdout,im,jnp,psl_inc,
0.,’PRES’,’SRFC’,1.e+15,’SLP’)

end if

if (ktwanted(ktuu) .or.ktwanted(ktvv) .or.
ktwanted (ktHH) .or.ktwanted(ktqq)) then

write(stdout,’(/2a)’) myname,
>: Analysis-Increments of Upper-Air Variables:’

if (ktwanted(ktuu)) call GDSTAT (stdout,im,jnp,mlev,
u_inc,pres_lev,’WIND’,’PRES’,1.e+15,’A-Inc of UWND’,1)
if (ktwanted(ktvv)) call GDSTAT (stdout,im,jnp,mlev,
v_inc,pres_lev,’WIND’,’PRES’,1.e+15,’A-Inc of VWND’,1)
if (ktwanted(ktHH)) call GDSTAT (stdout,im,jnp,mlev,
z_inc,pres_lev,’HGHT’,’PRES’,1.e+15,’A-Inc of HGHT’,1)
if (ktwanted(ktqq)) call GDSTAT (stdout,im,jnp,mlev,
mix_inc,pres_lev,’MIXR’,’PRES’,1.e+15,’A-Inc of MIXR’,1)

end if

Assign sigh values here. They are initialized to zeroces for
now. The operation must be conditional since the memory may
not be available for some calls.

call ZEITBEG (’getsigh’)

if (ktwanted(ktus)) call SSCAL (n2grd,0.,usl_sigh,1)

if (ktwanted(ktvs)) call SSCAL (n2grd,0.,vsl_sigh,1)

if (ktwanted(ktslp)) call SSCAL (n2grd,0.,psl_sigh,1)

if (ktwanted(ktuu)) call SSCAL (n3grd,0.,u_sigh,1)

if (ktwanted(ktvv)) call SSCAL (n3grd,0.,v_sigh,1)

if (ktwanted(ktHH)) call SSCAL (n3grd,0.,z_sigh,1)

if (ktwanted(ktqq)) call SSCAL (n3grd,0.,mix_sigh,1)

call ZEITEND

All done

l1=len(psasname)+len(’*’)+len(myname)+len(’ (): normal return’)
write(stdout,’(/80a)’) (’=’,i=1,1)

write(stdout,’(5a)’) psasname,’*’ ,myname,’(): normal return’
write(stdout,’(80a)’) (’=’,i=1,1)

return

CONTAINS

19

20

A.2 getAlallo()

This INTERNAL routine initializes several aspects of PSAS, including;:

e Opens resource file and initializes several tables necessary for the error covariance
modeling subsystem.

e Assigns a region number to each observation and set the relevant internal pointers.

Sorts observations by region, data-type, data-source, latitude, longitude and level.

Performs super-obing.

Prints out lots of informational output, if specified.

CALLING SEQUENCE:

call getAIallO()

INPUT PARAMETERS:

Explicitly none, but this routine inherits all data from
its parent getAiall().

OUTPUT PARAMETERS:

Explicitly none, but this routine resets most of the
input parameters to getAIall().

BUGS:

Most of the complexity level of this routine is due to its
provisional nature. Eventually most of these tasks will be moved
to the data ingestion level of the data assimilation system.

21

SEE ALSO:

getATall() parent routine.
FILES USED:
stdrc a unit number allocated when the subroutine is in use,

for the input of control parameters and data tables.

REVISION HISTORY:

12feb96 da Silva Moved from main body of getAIall().

SOURCE CODE:

! Hello, world!

l1=len(psasname)+len(’*’)+len(myname)+
& len(’(): Version_’)+lnblnk(version)

write(stdout,’(/80a)’) (’=’,i=1,1)

write(stdout,’(5a)’) psasname,’*’ ,myname,’(): Version ’,version
write(stdout,’(80a)’) (’=’,i=1,1)

! Total number of 2-D and 3-D gid-points

n2grd = im * jnp
n3grd = im * jnp * mlev

stdrc=luavail()
call GETENV (’PSASRC’, psasrc) ! Unix extension

22

R

if (psasrc.eq.’ ’) psasrc=def_psasrc ! default name
call OPNINPK (stdrc,psasrc,ier)
l=max(1,lnblnk(psasrc))
if(ier.ne.0) then

write(stderr,’(4a,i4)’) myname,’: error from opninpk(’,

psasrc(1:1),’), iostat = ’,ier

call PSASexit(2,myname)
else

write(stdout,’(4a)’) myname,’: using ’,psasrc(1l:1),

> for runtime parameter input’

end if

Initialize observation related information

call initRSRC

List initialized information. Need rewrite pardisp(), since
so many changes have been made. A lot of information listed by
pardisp() is no longer relevent, while some thing important is
not even listed.
c9date=’01-apr-99’ ! talking about debris...
c8time=’000000"
call PARDISP (STDOUT,
myname, c9date, c8time,
nobs, kxmax, ktmax,
verbose, stdout, idelprb, idelpre, idelpri,
Ykkkkk’ . -99, 0, O, ntwidth,
nbands, msmall,
cgname, seplim, criter, minmax, maxpass)

Print a summary of all observations.

if(verbose) call OBSSMRY (stdout, nobs, kx, kt)

Reset ktwanted according to the mask for this call.
ktwanted(ktus)=ktwanted(ktus).and.want_usl
ktwanted(ktvs)=ktwanted(ktvs).and.want_vsl
ktwanted(ktslp)=ktwanted(ktslp).and.want_psl
ktwanted(ktuu)=ktwanted(ktuu).and.want_u
ktwanted(ktvv)=ktwanted(ktvv).and.want_v
ktwanted(ktHH)=ktwanted(ktHH).and.want_z
ktwanted(ktqq)=ktwanted(ktqq).and.want_mix

Print out informational summaries

if (ktwanted(ktus).or.ktwanted(ktvs).or.ktwanted(ktslp)) then
write(stdout,’(/2a)’) myname,

23

&

>: Sigma-F of Surface Variables:’

if (ktwanted(ktus)) call lvstat(stdout,im, jnp,usl_sigF,
O.,’WIND’,’SRFC’,SigFmiSS,’USLE’)

if (ktwanted(ktvs)) call lvstat(stdout,im,jnp,vsl_sigF,
O.,’WIND’,’SRFC’,SigFmiSS,’VSLE’)

if (ktwanted(ktslp)) call lvstat(stdout,im, jnp,psl_sigF,
O.,’PRES’,’SRFC’,SigFmiSS,’SLPE’)

end if

if (ktwanted(ktuu) .or.ktwanted(ktvv) .or.
ktwanted (ktHH) .or.ktwanted(ktqq)) then

write(stdout,’(/2a)’) myname,
>: Sigma-F of Upper-Air Variables:’

if (ktwanted(ktuu)) call GDSTAT(stdout,im,jnp,mlev,
u_sigF,pres_lev,’WIND’,’PRES’,sigFmiss,’Sigma-F of UWND’,1)
if (ktwanted(ktvv)) call GDSTAT(stdout,im,jnp,mlev,
v_sigF,pres_lev,’WIND’,’PRES’,sigFmiss,’Sigma-F of VWND’,1)
if (ktwanted(ktHH)) call GDSTAT(stdout,im,jnp,mlev,
z_sigF,pres_lev,’WIND’,’PRES’,sigFmiss,’Sigma-F of HGHT’,1)
if (ktwanted(ktqq)) call GDSTAT(stdout,im,jnp,mlev,
mix_sigF,pres_lev,’WIND’,’PRES’,sigFmiss,
’Sigma-F of MIXR’,1)

end if

Restrict observations only to those ’within’ at least one of
*hyper-boxes’, defined by lat/lon/pres/kx/kt/time. Remove data
outside the ’hyper-boxes’ by pushing them to the end of the list
and reset ‘nobs’ to the size of the front part of the list.
call ZEITBEG (’restrict’)
call RESTRICT (verbose, stdout, nobs, prtdati,
lat, lon, pres,kx, kt,
dels, sig_0, sig_F,
time,nnobs)
nobs = nnobs ! completly redefine the whole data record.
call ZEITEND

Sort observations in the order of:

region(lat,lon)-kt-kx-lat-lon-pres

Also, define pointer/size information of each region and type
by set arrays iregbeg, ireglen, and ityplen.

call ZEITBEG (’sort’)
call SORT (myname, verbose, stdout, nobs,

lat, lon, pres,
kx, kt, dels,

24

R

xR

sig_0, sig_F, time,
maxreg, ktmax, iregbeg, ireglen, ityplen)

call ZEITEND

Remove ’duplicates’ in the observations and adjust iregbeg,
ireglen, and ityplen accordingly.
call ZEITBEG (’dupelim’)
call DUPELIM (verbose, stdout,

nobs, kx, kt, kl,

lat, 1lon, pres,

dels, sig_0, sig_F, time,

maxreg, iregbeg, ireglen, ktmax, ityplen)
call ZEITEND

’Superob’ observations that are within a given range. Quit
searching loop if nothing to ’superob’, or have looped 5 times.
Iregbeg, ireglen, and ityplen arrays are adjusted accordingly.
call ZEITBEG (’proxel’)
nprox=0
n=1
do while(n.eq.1 .or. nprox.ne.0.and.n.le.5)
call PROXEL (verbose, stdout,
nobs, kx, kt, k1,
lat, lon, pres,
dels, sig_0, sig_F,
time, maxreg, iregbeg, ireglen,
ktmax, ityplen, nprox)
n=n+1
end do
call ZEITEND

Reset the levels of the surface variables to 1000.
This way the surface analysis will use the same error
characteristics at the surface and at 1000 hPa.
do n=1,nobs
if(kt(n).eq.ktslp .or.
kt(n).eq.ktus .or.
kt(n).eq.ktvs) then
pres(n)=1000.
end if
end do

Set the grid parameters. There apparently a good here for it
to be definied only now.

call GRIDXXO

25

Merge in observation levels

call ZEITBEG(’setcors’)

call SETPLEVS (mlev,pres_lev,nobs,pres,
MXveclev,nveclev,pveclev)

call SET_oeCHH

call SET_fecHH

call SET_fecQQ

call SEThfecW ! naming inconsistency

call ZEITEND

Create observation error stdv. NOTE: in the original
PSAS design the observation error standard deviation
came along with the data stream. Due to the increasing
complexity of the observation error modeling, the
observation error is now derived from parameters in the
resource file. Next we overwrite whatever came in...

call INTP_sigO (nobs, kx, kt, pres, sig_Oc, sig_Ou)

More informational output. This time prints a summary of the
observations actually used in analysis

if(verbose) call OBSSMRY (stdout, nobs, kx, kt)

call OBSTAT (stdout, nobs,
kx,kt,pres, sig_F,
nlev_oe, plev_oe,
’getATall*FcstErr*sigF’)

call OBSTAT (stdout, nobs,
kx,kt,pres, dels,
nlev_oe,plev_oe,’getAIall*InnovVector’)

call OBSTAT (stdout, nobs,
kx, kt, pres, sig_Oc,
nlev_oe, plev_oe, ’getAlall*ObsErr*sigQOc’)

call OBSTAT (stdout, nobs,

kx, kt, pres, sig_Ou,
nlev_oe, plev_oe,’getAlall*0ObsErr*sigOu’)

return
end subroutine getAIallO

26

A.3 solvedx()

Given innovation (observation minus forecast) data, this routine returns the vector y solu-
tion of the linear system of equations

(HP'HT + R)y = w° — Huw'

where w? — Hw/ is the innovation. (The notation follows da Silva and Guo 1996, DAO
Office Note 9602). Notice that y is defined at observation locations. A pre-conditioned
conjugate gradient algorithm is used to solve this linear system. This routine can handle
multiple RHS vectors, a feature needed for the calculation of analysis error variances by
means of randomized trace estimates.

CALLING SEQUENCE:

call SOLVE4X (nkr, kr_beg, kr_len, kt_len,

& nobs, kx, rlat, rlon, rlev,
& sigU, sig_0Oc, sig_F, nvecs,
& nobs_d, rhs, Xvec)

INPUT PARAMETERS:

implicit NONE

include ’ktmax.h’ ! maximun no. of data types
integer nkr ! number of regions
integer kr_beg(nkr) ! beginning of each region
integer kr_len(nkr) ! no. of obs. in each region
integer kt_len(ktmax,nkr) ! no. of obs. of a given data
! 1in each region
integer nobs ! number of observations
integer kx(nobs) ! GEOS/DAS data sources
real rlat(nobs) ! latitudes (deg) of obs.
real rlon(nobs) ! longitudes (deg) of obs.
real rlev(nobs) ! pressure levels (hPa) of obs.
real sig_Ou(nobs) ! spatially uncorrelated portion
! of obs. error stdv
real sig_Oc(nobs) ! spatially correlated portion
! of obs. error stdv
real sig_F(nobs) ! forecast error stdv
integer nvecs ! number of RHS vectors
integer nobs_d ! leading dimension of RHS vector

27

as declared in calling program.

real rhs(nobs_d,nvecs)

NOTE:

! Usually nobs_d = nobs.

RHS vectors. For the convetional
PSAS analysis system ’rhs’ will
contain the innovations (0-F).
However, multiple RHS will be
necessary for implementation
analysis error variances by
randomized trace estimates.

All input arrays indexed by ’nobs’ or ’nobs_d’ are assumed
sorted by region. Within each region, data is assumed
sorted by data type (kt). Within each data-type, data

is assumed sorted by latitude, longitude and finally by
levels.

OUTPUT PARAMETERS:

real Xvec(nobs_d,nvecs) ! solution vectors.
SEE ALSO:
cg_main() top level conjugate gradient routine.

REVISION HISTORY:

ddmmm93
28may93
07 jan94
03o0ct94

040ct94
19Jan95

Pfaendtner Original code.

Searl Modification for dynamic storage on CRAY.

Sienkiewicz Added pass of trig lat/lon.

da Silva Implemented CRAY specifics with IFDEFs.
Eliminated calls to conjgr3 . conjgr4.
Input parameter ’nbandmx’ is now obsolete.

da Silva Introduced parameter nband, and call to CONJGR.

Guo Added wobs tables to pass pindx2() values to
?7cor1() and ?7corx() routines. One could use

28

rlevs for the same purpose to reduce the over-
head, since rlevs has no real purpose in this
subroutine and subsequent routines.

02Feb95 Guo Changed CRAY to _UNICOS for consistency and
to follow the guide lines.
0BFeb96 da Silva Revised prologue and major clean-up.

Removed IFDEFs about dynamic allocation. Code
now requires Fortran 90 for portability.
Introduced internal routine solve4x0().

SOURCE CODE:

character*7 myname
parameter (myname=’solve4x’)

! Conjugate gradient data structure

include ’bands.h’

! Dynamic allocation

real sig_del(nobs) ! innovation (0O-F) stdv
real nsig_Ou(nobs) ! normalized sig _Ou = sig_Ou/sig_del
real nsig_Oc(nobs) ! normalized sig_Oc = sig_Oc/sig_del
real nsig_F(nobs) ! normalized sig F = sig F /sig_del

! Cartesian coordinates (on the

! unity sphere) of unit vectors

! of the spherical coordinate system
real gqr_x(nobs) ! o x-coord of radial unit vector
real qr_y(nobs) ! o y-coord of radial unit vector
real qr_z(nobs) ! o z-coord of radial unit vector
real gm_x (nobs) ! o x-coord of meridional unit vector
real gm_y (nobs) ! o y-coord of meridional unit vector
real gm_z(nobs) ! o z-coord of meridional unit vector
real ql_x(nobs) ! o x-coord of longitudinal unit vector
real gl_y(nobs) ! o y-coord of longitudinal unit vector

! NOTE: ql_z is not needed.

Interpolation indices/weights:

integer ktab(nobs) o vertical interpolation index

real wtab(nobs) o vertical interpolation weights
integer jtab(nobs) o meridional interpolation index
real vtab(nobs) o meridional interpolation weights
integer ks(nobs) ! sounding index

29

real bvec(nobs,nvecs) ! normalized RHS = RHS / sig_del

! Levels for correlation tables, etc.
include ’lvmax.h’
include ’levtabl.h’
include ’hfecW.h’

include ’stdio.h’ ! standard i/o

! Local variables

integer 1 ! data index
integer ivec ! vector index
integer ierr ! error code
real var

call solve4x0()

! Normalize the the RHS vectors

do ivec=1,nvecs
do i=1,nobs
bvec(i,ivec) = rhs(i,ivec) / sig_del(i)
end do
end do

Use conjugate gradient algorithm to solve the normalized
linear system based on the innovation CORRELATION matrix,
i.e., the CG solver works on the system

Cx=5>D

where C is the innovation correlation matrix and b is
(usually) the innovation normalized by its standard deviation

call CG_MAIN (cgverb(nbandcg),
nkr, kr_beg, kr_len, kt_len,
nobs, ks, nsig_Ou, nsig_Oc, nsig_F,
qr_x, qr_y, qr_-z,
gm_x, qm_y, gqm_z,
gql_x, ql_y, ktab,
wtab, jtab, vtab,
nvecs, nobs, bvec, nobs, Xvec, ierr)

SRS S S S

30

Error handling
if (ierr .ne. 0) then
write(stderr,’(2a,i3)’) myname,
& ’: error from cg_main(), ’,ierr
call PSASexit (2, myname)
end if

Scale solution by the innovation standard deviation
do ivec = 1, nvecs
do i 1, nobs
Xvec(i,ivec) = sig_del(i) * Xvec(i,ivec)
end do
end do

return

CONTAINS

31

A.4 solvedx0()

This INTERNAL Fortran 90 routine initializes several internal parameters relevant to the
conjugate gradient solver, including

e Computes (z,y, z) cartesian coordinates on the unity sphere corresponding to the
(lat,lon) of the input observations. These cartesian coordinates are used by the co-
variance modeling subsystem to compute horizontal distances.

e Computes the sounding index of the observations.
e Set interpolation indices and weights.

e Normalizes observation and forecast error standard deviations (by the innovation stan-
dard deviation).

CALLING SEQUENCE:

call solve4x0()

INPUT PARAMETERS:

Explicitly none, but this routine inherits all data from
its parent solve4x().

OUTPUT PARAMETERS:

Explicitly none, but this routine sets several quantities
of relevance to the conjugate gradient solver.

SEE ALSO:

solve4x() parent routine.

32

REVISION HISTORY:

12feb96 da Silva Moved from main body of solved4x().

SOURCE CODE:

! Compute x,y,z coordinates of observations

call LL2QVEC (nobs,rlat,rlon,
& qr_x,qr_y,qr_z,qm_x,qm_y,qm_z,ql_x,ql_y)

! Set sounding index of observations

call SETPIX (nobs, kx, rlat, rlon, ks)

! Set tables for vertical/horizontal interpolation

call SLOGTAB (.true., nveclev,pveclev,nobs,rlev,ktab,wtab)
call SLINTAB (.true., nHlat,Hlat,nobs,rlat,jtab,vtab)

! Compute normalized error stdv

do i=1,nobs
var=sig_Ou(i)*sig_Ou(i)+sig_Oc(i)*sig Oc(i)+sig F(i)*sig F(i)
sig_del(i) = 1. / sqrt(var)
nsig_Ou(i) = sig_Ou(i) / sig_del(i)
nsig_Oc(i) = sig_0c(i) / sig_del(i)
nsig F(i) sig F(i) / sig_del(i)

end do

return

end subroutine SOLVE4X0

33

A.5 cg main()

Solves the linear system of equations

Ce=0b

where (' is the innovation correlation matrix, and b is a set of multiple RHS. When perfoming
a global analysis with PSAS, the RHS is simply the innovation (O-F) normalized by its
standard deviation. The multiple RHS are necessary to estimate analysis error variances
by means of randomized trace estimates.

The Pre-conditioned Conjugate Gradient algorithm is standard and closely follows

Golub, G. H. and C. F. van Loan, 1989: Matriz Computations, 2nd Edition, The John
Hopkins University Press, 642pp.

and is reproduced below.

k=0;20=0;r0=0
while r; # 0
solve C'zp = r, = call cg.level2()
k=k+1
iszl{plz,ZO}
else { By =rl_ 12y /r]_sz_s
Pk = 2k—1 + Bepr-1 }
qr = Cpyg, — call sCxpy()
_ T T
Qg = Zp_yTp_1/ Dk Gy
Tk = Tgp—1 + QP
Tk =Tkg—1 — Oqk
end

Notice that cg_level2() implements the pre-conditioner which consists of solving the same
problem using only regional diagonal blocks of the the correlation matrix C'.

The practical implementation below stops the iteration before exact convergence. Indeed,
the iteration stops if we exceed a pre-determined maximum number of iterations or the
residual is reduced by a specified number of orders of magnitude. These options are selected
via the PSAS resource file (usually named psas.rc).

CALLING SEQUENCE:

call CG_MAIN (verbose,
nkr, kr_beg, kr_len, kt_len,
nobs, ks, nsig_Ou, nsig_Oc, nsig_F,
qr_x, qr_y, qr_z, gqm_x, qm_y, gm_z, ql_x, ql_y,
ktab, wtab, jtab, vtab,
nvecs, nobs_d, b, x, ierr)

xR

34

INPUT PARAMETERS:

implicit NONE

logical

include
integer
integer
integer
integer

integer
integer

real
real

real

real
real
real
real
real
real
real
real

integer
real
integer
real

verbose

’ktmax.h’
nkr
kr_beg(nkr)
kr_len(nkr)

kt_len(ktmax,nkr)

nobs
ks (nobs)

nsig_Ou(nobs)
nsig_Oc(nobs)

nsig_F(nobs)

gqr_x(nobs)
qr_y(nobs)
qr_z(nobs)
gm_x (nobs)
gm_y (nobs)
gm_z(nobs)
gl_x(nobs)
gl_y(nobs)

ktab(nobs)
wtab(nobs)
jtab(nobs)
vtab(nobs)

if .true. prints out all kind
of informational output to stdout.

maximun no. of data types

number of regions

beginning of each region

no. of obs. in each region

no. of obs. of a given data type
in each region

number of observations
sounding index

Observation/forecast errors stdv

normalized by innovation (0-F) stdv:

o normalized spatially uncorrelated
observation error stdv

o normalized spatially correlated
observation error stdv

o normalized forecast error stdv

Cartesian coordinates (on the
unity sphere) of unit vectors
of the spherical coordinate system

o x-coord of radial unit vector
o y-coord of radial unit vector
o z-coord of radial unit vector
o x-coord of meridional unit vector
o y-coord of meridional unit vector
o z-coord of meridional unit vector
o x-coord of longitudinal unit vector
o y-coord of longitudinal unit vector

NOTE: ql_z is not needed.

Interpolation indices/weights:

o vertical interpolation index

o vertical interpolation weights
o meridional interpolation index

o meridional interpolation weights

35

integer nvecs
integer nobs_d

real b(nobs_d,nvecs)

OUTPUT PARAMETERS:

Number of RHS vectors

leading dimension of RHS vector
as declared in calling program.
Usually nobs_d = nobs.

RHS vectors normalized by
innovation stdv. For the convetional
PSAS analysis system ’b’ will
contain the normalized innovations
(0-F). However, multiple RHS will be
necessary for implementation
analysis error variances by
randomized trace estimates.

real x(nobs_d,nvecs) ! Solution vectors.
integer ierr ! error return code. All is well
! if ierr=0.
SEE ALSO:
cg_level2() Pre-conditioner routine.
stdio.h Include file defining stdandard I/0 units
BLAS Basic linear algebra sub-programs

REVISION HISTORY:

03apr93 Pfaendtner Original code

04jun93 Pfaendtner Modification for dynamic storage on CRAY
07jan94 Sienkiewicz Added pass of trig lat/lon to subroutine
14feb94 da Silva Fixed search direction bug

09apr94 Pfaendtner Added prologue

13apr94 Pfaendtner Added use of libsci routines

03oct94 da Silva Implemented CRAY specifics with IFDEFs.
040ct94 da Silva Routine changed name from CONJGR5 to

36

simply CONJGR. Introduced parameter
nbandmx.

19Jan95 Guo Added wobs tables to pass pindx2() values to
?7cor1() and ?7corx() routines. One could use
rlevs for the same purpose to reduce the over-
head, since rlevs has no real purpose in this
subroutine and subsequent routines.

02Feb95 Guo Changed CRAY to _UNICOS for consistency and
to follow the guide lines.
110ct95 Guo Summary of changes since 02Feb95:

+ some structural changes for multitasking on
€90, including now handling all regions in
one conjgr2() call.

+ modified to accept multi vectors;

+ replaced multbyC() call to sCxpy() call;

06Feb96 da Silva Revised prologue, and several minor changes
for readability:

o name change: from conjgr() to cg_main()

o removed static allocation IFDEFs;
code now requires Fortran 90 for
portability.

o simplified main loop

o several variable name changes to conform
to notation in Golub and van Loan;
comments are straight quotation from book.

o introduction of f90 assignments whenever
possible.

SOURCE CODE:

character*7 myname
parameter (myname=’cg_main’)

! Local storage (dynamic allocation)

include ’mxpass.h’ ! max dimension for sizerr

real x_k(nobs,nvecs) ! solution at kth iteration

real r_k(nobs,nvecs) ! residual at kth iteration

real z_k(nobs,nvecs) ! pre-conditioner at kth iteration
real p_k(nobs,nvecs) ! search direction at kth iteration
real Cp_k(nobs,nvecs) ! Correlation matrix * p_k

real r_norm(0:mxpass,nvecs) ! residual norm

real zTr_new(nvecs) ! z2 + r (new)

real zTr_old ' z2 xr (old)

! where z’ = transpose(z)

37

! Defines kind of covariance matrices
integer kind_mat, kind_cov
include ’kind_mats.h’
include ’kind_covs.h’

! Convergence control parameters.

include ’bands.h’

include ’stdio.h’

! BLAS functions
real sdot, snrm2
external sdot, snrm2
! Minor local variables not worth commenting
real alpha_k, beta, tol
integer k, kn, ivec, k_max

integer 1

call ZEITBEG (cgname(nbandcg)) ! starts timing

! Initialization: k=0; x_0=0; r_0=b

k
X

n o

_k 0.
do ivec=1,nvecs
r_k(1:nobs,ivec) = b(1:nobs,ivec)
r_norm(k,ivec) = SNRM2(nobs,r_k(1,ivec),1)
end do
kn = 0

! Iterate...
k_max = maxpass(nbandcg)
tol = criter(nbandcg)

DO WHILE (k .le. k_max .and.
& (r_norm(kn,1)/r_norm(0,1)) .gt. tol)

! Pre-conditioner step: Solve \hat{C} z_k = r_k

R

call CG_LEVEL2 (verbose.and.cgverb(2), kind_covO.or.kind_covF,
nkr, kr_beg, kr_len, kt_len,
nobs, ks, nsig_Ou, nsig_Oc, nsig_F,
qr_x, qr_y, 9qr_z, qm_x, qm_.y, gm_z, ql_x, ql_y,
ktab, wtab, jtab, vtab,
nvecs, nobs, r_k, z_k, lerr)

Error handling
if (ierr .ne. 0) then
if (ierr .1t . 0) then
write(stderr,*) myname,
>: insufficient working space in cg_level2(), ’,
’gize = ’,-jerr
else
write(stderr,’(3a,i6)’) myname,
’: unexpected return from cg_level2(), ’,

’err = ’,ierr
end if
call PSASexit(2,myname)
end if

Set search direction, p_k.

if(k.eq.1) then
zTr_new(ivec) = SDOT(nobs,r_k(1,ivec),1,z_k(1,ivec),1)
call SCOPY(nobs,z_k(1,ivec),1,p_k(1,ivec),1)

else { beta_k = r_{k-1}"T z_{k-1} / r_{k-1}"T z_{k-2}
p_k = z_k-1 + \beta_k p_{k-1} }

zTr_old = zTr_new(ivec)
zTr_new(ivec) = SDOT(nobs,r_k(1,ivec),1,z_k(1,ivec),1)
beta = zTr_new(ivec) / zTr_old
call SAXPY(nobs,beta,p_k(1,ivec),1,z_k(1,ivec),1)
call SCOPY(nobs,z_k(1,ivec),1,p_k(1,ivec),1)
end if

end do ! loop over RHS vectors

39

rrreee

kind_mat=nbandcg

call sCxpy (kind_mat, kind_cov0 .or. kind_covF,
nkr, kr_beg, kr_len, kt_len,
nobs, ks, nsig_Ou, nsig_Oc, nsig_F,
qr_x, qr_y, qr_z, 9gm_x, qm_.y, 9gm_z, ql_x, ql_y,
ktab, wtab, jtab, vtab,
nvecs, nobs, p_k, nobs, Cp_k,
ierr)

Error handling
if (ierr .ne. 0) then
if(ierr.1t.0) then
write(stderr,’(3a,110)’) myname,
’: insufficient working space in sCxpy(), ’,
’gize = ’,-ierr
else
write(stderr,’(3a,i3)’) myname,
’: unexpected return from sCxpy(), 7,

’err = ’,ierr
end if
call PSASexit(2,myname)
end if

For each RHS vector

do ivec=1,nvecs

alpha_k = z_{k-1}"T r_{k-1} / p_k"T q_k

alpha_k = zTr_new(ivec) /
SDOT (nobs,p_k(1,ivec),1,Cp_k(1,ivec),1)

x_k = x_{k-1} + alpha_k p_k

call SAXPY(nobs, +alpha_k, p_k(1,ivec),1,x_k(1,ivec),1)

r_k = r_{k-1} - alpha_k q_k

call SAXPY(nobs,-alpha_k,Cp_k(1,ivec),1,r_k(1,ivec),1)

end do

Residual norm at end of this iteration

kn = kn + 1
if (kn .gt. MXPASS) kn = 1 ! cyclic storage
do ivec=1,nvecs

r_norm(kn,ivec) = SNRM2(nobs,r_k(1,ivec),1)
end do

40

END DO ! end of CG iteration

Convergence achieved
if((r_norm(kn,1)/r_norm(0,1)) .le. tol .and. verbose) then
write(stdout,’(2a)’) myname,’: convergence achieved’

Maximum number of iterations exceeded
else if (verbose) then
write(stdout,’(2a)’) myname,
’: maximum number of iterations exceeded’

end if

Print summary
if (verbose) then
call CGNORM (myname, criter(nbandcg), mxpass,
k, nvecs, r_norm, nobs)
end if

Return kth iterate as solution

do ivec=1,nvecs
x(1:nobs,ivec) = x_k(1:nobs,ivec)
end do

All done

call ZEITEND

return
end

41

A.6 cg.level2()

Solves the linear system of equations

Cr=0
where C' is a simplified version of innovation covariance matrix, and b is a set of multiple
RHS. The matrix C' consists of regional diagonal blocks of the the correlation matrix C'. This
routine is meant to be a pre-conditioner for routine cgmain(). When perfoming a global
analysis with PSAS, the RHS is simply the innovation (O-F) normalized by its standard

deviation. The multiple RHS are necessary for the estimate of analysis error variances by
means of randomized trace estimates.

The Pre-conditioned Conjugate Gradient algorithm is standard and closely follows

Golub, G. H. and C. F. van Loan, 1989: Matriz Computations, 2nd Edition, The John
Hopkins University Press, 642pp.

and is reproduced in the prologue of routine cg-main(). The pre-conditioner for this routine
is implemented in cg_levell(). This pre-conditoner solves a similar problem, this time uni-
variately.

CALLING SEQUENCE:

call CG_LEVEL2 (verbose, kind_cov,
nkr, kr_beg, kr_len, kt_len,
nobs, ks, nsig_Ou, nsig_Oc, nsig_F,
qr_x, qr_y, qr_z, gqm_x, qm_y, qm_zZ, ql_x, ql_y,
ktab, wtab, jtab, vtab,
nvecs, nobs_d, b, x, ierr)

xR

INPUT PARAMETERS:

logical verbose ! if .true. prints out all kind
! of informational output to stdout.

integer kind_cov ! specifies the kind of covariance
! matrix.
include ’ktmax.h’ maximun no. of data types

integer nkr

integer kr_beg(nkr)
integer kr_len(nkr)
integer kt_len(ktmax,nkr)

number of regions

beginning of each region

no. of obs. in each region

no. of obs. of a given data type

42

integer
integer

real
real

real

real
real
real
real
real
real
real
real

integer
real
integer
real

integer
integer

real

nobs
ks (nobs)

nsig_Ou(nobs)
nsig_Oc(nobs)

nsig_F(nobs)

gqr_x(nobs)
qr_y(nobs)
qr_z(nobs)
gm_x (nobs)
gm_y (nobs)
gm_z(nobs)
gl_x(nobs)
gl_y(nobs)

ktab(nobs)
wtab(nobs)
jtab(nobs)
vtab(nobs)

nvecs
nobs_d

b(nobs_d,nvecs)

in each region

number of observations
sounding index

Observation/forecast errors stdv
normalized by innovation (0-F) stdv:
o normalized spatially uncorrelated

observation error stdv

o normalized spatially correlated

observation error stdv

o normalized forecast error stdv

Cartesian coordinates (on the
unity sphere) of unit vectors
of the spherical coordinate system

o x-coord of radial unit vector
o y-coord of radial unit vector
o z-coord of radial unit vector
o x-coord of meridional unit vector
o y-coord of meridional unit vector
o z-coord of meridional unit vector
o x-coord of longitudinal unit vector
o y-coord of longitudinal unit vector
NOTE: ql_z is not needed.

I
o}

o}
o}
o}
N

1

N

43

nterpolation indices/weights:
vertical interpolation index
vertical interpolation weights
meridional interpolation index
meridional interpolation weights

umber of RHS vectors

eading dimension of RHS vector
as declared in calling program.
Usually nobs_d = nobs.

ormalized (by innovation stdv)
RHS vectors. For the convetional
PSAS analysis system ’b’ will
contain the innovations (0-F).
However, multiple RHS will be
necessary for implementation
analysis error variances by
randomized trace estimates.

OUTPUT PARAMETERS:

real x(nobs_d,nvecs) ! Solution vectors.
integer ierr ! error return code. All is well
! if ierr=0.
SEE ALSO:
cg_levell() Pre-conditioner routine.
stdio.h Include file defining stdandard I/0 units
BLAS Basic linear algebra sub-programs

REVISION HISTORY:

03apr93 Pfaendtner Original code

04jun93 Pfaendtner Modification for dynamic storage on CRAY

07jan94 Sienkiewicz Added pass of trig lat/lon to subroutine

14feb94 da Silva Fixed search direction bug

09apr94 Pfaendtner Added prologue

13apr94 Pfaendtner Added use of libsci routines

03oct94 da Silva Implemented CRAY specifics with IFDEFs.

040ct94 da Silva Routine changed name from CONJGR5 to
simply CONJGR. Introduced parameter
nbandmx.

19Jan95 Guo Added wobs tables to pass pindx2() values to
?7cor1() and ?7corx() routines. One could use
rlevs for the same purpose to reduce the over-
head, since rlevs has no real purpose in this
subroutine and subsequent routines.

02Feb95 Guo Changed CRAY to _UNICOS for consistency and
to follow the guide lines.
110ct95 Guo Summary of changes since 02Feb95:

+ some structural changes for multitasking on
€90, including now handling all regions in
one cg_level2() call.

+ modified to accept multi vectors;

+ replaced multbyC() call to sCxpy() call;

06Feb95 da Silva Revised prologue, and several minor changes
for readability:

o name change: from conjgr2() to cg_level2()

o removed static allocation IFDEFs;

44

code now requires Fortran 90 for
portability.

o simplified main loop

o several variable name changes to conform
to notation in Golub and van Loan;
comments are straight quotation from book.

o introduction of f90 assignments whenever
possible.

SOURCE CODE:

character*9 myname
parameter (myname=’cg_level2’)

! Local storage (dynamic allocation)

include ’mxpass.h’ ! max dimension for sizerr

real x_k(nobs,nvecs) ! solution at kth iteration

real r_k(nobs,nvecs) ! residual at kth iteration

real z_k(nobs,nvecs) ! pre-conditioner at kth iteration
real p_k(nobs,nvecs) ! search direction at kth iteration
real Cp_k(nobs,nvecs) ! Correlation matrix * p_k

real r_norm(0:mxpass,nvecs) ! residual norm

real zTr_new(nvecs) ! z2 + r (new)

real zTr_old ' z2 xr (old)

! where z’ = transpose(z)
integer kt_beg(ktmax,nkr)
integer 1lblkerr(ktmax#*nkr)
! Minor local variables
real alpha_k, beta, tol
integer k, kn, ivec, k_max

integer ibeg, ireg, ilen, kt, ikOx, ikFx
integer i, ier, 1lblk

! Convergence control parameters.

integer kind_mat
include ’kind_mats.h’
include ’kind_covs.h’

! BLAS functions

real sdot, snrm2
external sdot, snrm2

call ZEITBEG (cgname(2))

! Initialization: k=0; x_0=0; r_0=b

n o

k =
x_k 0.
do ivec=1,nvecs
r_k(1:nobs,ivec) = b(1l:nobs,ivec)
r_norm(k,ivec) = SNRM2(nobs,r_k(1,ivec),1)
end do
kn = 0

k_max = maxpass(2)

tol = criter(2)

DO WHILE (k .le. k_max .and.

& (r_norm(kn,1)/r_norm(0,1)) .gt. tol)

Loop over kt-blocks across regions. The data are sorted by
regions, and within each region the obs are sorted by data type
(kt). The loop here is over these kt-blocks...

do 1lblk = 1, ktmax*nkr

lblkerr(1blk)=0

ireg = (1blk-1)/ktmax+1
kt mod(1blk-1,ktmax)+1

kt_beg(kt,ireg)
kt_len(kt,ireg)

ibeg
ilen

ikOx=1
if ((kind_cov.and.kind_cov0) .ne.0) ikOx=ibeg
ikFx=1
if ((kind_cov.and.kind_covF).ne.0) ikFx=ibeg

46

PRI

If the kt-block is not empty...

if (ilen.gt.0) then

Invoke the pre-conditioner for each of these
univariate kt-blocks

call CG_LEVEL1 (verbose.and.cgverb(1), kind_cov,
ireg, kt, ilen, ks(ik0x),
nsig_Ou(ik0x), nsig_O0c(ik0x), nsig_F(ikFx),
qr_x(ibeg), qr_y(ibeg), qr_z(ibeg),
qm_x(ibeg), gm_y(ibeg), qm_z(ibeg),
ql_x(ibeg), ql_y(ibeg),
ktab(ibeg), wtab(ibeg), jtab(ikFx), vtab(ikFx),
nvecs, nobs, r_k(ibeg,1),
z_k(ibeg,1), ier)

Error handling. Notice that zeitend() is not balanced,
but who cares, since there is a much more serious problem
if(ier.ne.0) then
if(ier.1t.0) then
write(stderr,’(3a,i10)’) myname,
’: insufficient working space in cg_levell(), ’,
’gize = ’,-ier
else
write(stderr,’(2a,2(a,1i3))’) myname,
’: unexpected return from cg_levell(), ’,

’err = ’,ier,’ with kt = ’,kt
end if
lblkerr(lblk)=ier
end if
end if ! kt-block is not empty
end do ! loop over kt-blocks

Additional error handling. This apparently redundant
step is only necessary on a parallel enviroment
ierr=0
do 1blk=1,ktmax*nkr
if(1blkerr(1blk) .ne.0) then
ierr=1blkerr(1lblk)
return
end if
end do

Set search direction, p_k.

47

TR

do ivec=1,nvecs

if(k.eq.1) then

zTr_new(ivec) = SDOT(nobs,r_k(1,ivec),1,z_k(1,ivec),1)
call SCOPY(nobs,z_k(1,ivec),1,p_k(1,ivec),1)

else { beta_k = r_{k-1}"T z_{k-1} / r_{k-1}"T z_{k-2}
p_k = z_k-1 + \beta_k p_{k-1} }

zTr_old = zTr_new(ivec)

zTr_new(ivec) = SDOT(nobs,r_k(1,ivec),1,z_k(1,ivec),1)
beta = zTr_new(ivec) / zTr_old

call SAXPY(nobs,beta,p_k(1,ivec),1,z_k(1,ivec),1)

call SCOPY(nobs,z_k(1,ivec),1,p_k(1,ivec),1)

end if

end do ! loop over RHS vectors

kind_mat=kind_Rmat
call sCxpy (kind_mat, kind_cov,
nkr, kr_beg, kr_len, kt_len,
nobs, ks,nsig_Ou, nsig_Oc, nsig_F,
qr_x, qr_y, qr_z, 9gm_x, qm_.y, 9gm_z, ql_x, ql_y,
ktab, wtab, jtab, vtab,
nvecs, nobs, p_k, nobs, Cp_k,
ierr)

Error handling
if (ierr .ne. 0) then
if(ierr.1t.0) then
write(stderr,’(3a,110)’) myname,
’: insufficient working space in sCxpy(),
’gize = ’,-jerr
else
write(stderr,’(3a,i3)’) myname,
’: unexpected return from sCxpy(), 7,

’err = ’,ierr
end if
call PSASexit(2,myname)
end if

48

For each RHS vector

do ivec=1,nvecs

alpha_k = z_{k-1}"T r_{k-1} / p_k"T q_k
alpha_k = zTr_new(ivec) /
& SDOT (nobs,p_k(1,ivec),1,Cp_k(1,ivec),1)

x_k = x_{k-1} + alpha_k p_k

call SAXPY(nobs,+alpha_k, p_k(1,ivec),1,x_k(1,ivec),1)

r_k = r_{k-1} - alpha_k q_k

call SAXPY(nobs,-alpha_k,Cp_k(1,ivec),1,r_k(1,ivec),1)

end do

Residual norm at end of this iteration

kn = kn + 1
if (kn .gt. MXPASS) kn = 1 ! cyclic storage
do ivec=1,nvecs

r_norm(kn,ivec) = SNRM2(nobs,r_k(1,ivec),1)
end do

END DO ! end of CG iteration

Convergence achieved

if((r_norm(kn,1)/r_norm(0,1)) .le. tol .and. verbose) then
write(stdout,’(2a)’) myname,’: convergence achieved’

Maximum number of iterations exceeded
else if (verbose) then
write(stdout,’(2a)’) myname,
& ’: maximum number of iterations exceeded’

end if

Prints summary
if (verbose) then

call CGNORM (myname, criter(2), mxpass, k, nvecs, r_norm, nobs)
end if

49

Return kth iterate as solution

do ivec=1,nvecs
x(1:nobs,ivec) = x_k(1:nobs,ivec)
end do

call ZEITEND

return
end

50

A.7T cglevell()

Solves the linear system of equations

Ce=0b

where (' is a simplified version of innovation covariance matrix, and b is a set of multiple
right-hand-sides. The matrix C' consists of regional diagonal blocks of the the correlation
matrix C'. This routine is meant to be a pre-conditioner for routine cg_level2(). When
perfoming a global analysis with PSAS, the RHS is simply the innovation (O-F) normalized
by its standard deviation. The multiple RHS are necessary for the estimate of analysis error
variances by means of randomized trace estimates.

The Pre-conditioned Conjugate Gradient algorithm is standard and closely follows

Golub, G. H. and C. F. van Loan, 1989: Matriz Computations, 2nd Edition, The John
Hopkins University Press, 642pp.

and is reproduced in the prologue of routine cg-main(). The pre-conditioner for this routine
is implemented using LAPACK’s Cholesky solver [routines spptrf() and spptrs()]. This pre-
conditoner solves a much smaller problem, considering only diagonal blocks of €' with a
“couple” of profiles.

CALLING SEQUENCE:

call CG_LEVEL1 (verbose, kind_cov,
ireg, kt,
nobs, ks, nsig_Ou, nsig_Oc, nsig_F,
qr_x, qr_y, qr_z, gqm_x, qm_y, qm_zZ, ql_x, ql_y,
ktab, wtab, jtab, vtab,
nvecs, nobs_d, b, x, ierr)

R

INPUT PARAMETERS:

implicit NONE

logical verbose ! if .true. prints out all kind
! of informational output to stdout.

integer kind_cov ! specifies the kind of covariance
! matrix

integer ireg ! PSAS region index

integer kt ! GEOS/DAS data-type index

51

integer
integer

real
real

real

real
real
real
real
real
real
real
real

integer
real
integer
real

integer
integer

real

nobs
ks (nobs)

nsig_Ou(nobs)
nsig_Oc(nobs)

nsig_F(nobs)

gqr_x(nobs)
qr_y(nobs)
qr_z(nobs)
gm_x (nobs)
gm_y (nobs)
gm_z(nobs)
gl_x(nobs)
gl_y(nobs)

ktab(nobs)
wtab(nobs)
jtab(nobs)
vtab(nobs)

nvecs
nobs_d

b(nobs_d,nvecs)

number of observations
sounding index

Observation/forecast errors stdv

normalized by innovation (0-F) stdv:
o normalized spatially uncorrelated

observation error stdv

o normalized spatially correlated
observation error stdv

o normalized forecast error stdv

Cartesian coordinates (on the
unity sphere) of unit vectors
of the spherical coordinate system

o x-coord of radial unit vector
o y-coord of radial unit vector
o z-coord of radial unit vector
o x-coord of meridional unit vector
o y-coord of meridional unit vector
o z-coord of meridional unit vector
o x-coord of longitudinal unit vector
o y-coord of longitudinal unit vector
NOTE: ql_z is not needed.

I
o}

o
o
o

N
1

N

52

nterpolation indices/weights:
vertical interpolation index
vertical interpolation weights
meridional interpolation index
meridional interpolation weights

umber of RHS vectors

eading dimension of RHS vector
as declared in calling program.
Usually nobs_d = nobs.

ormalized (by innovation stdv)
RHS vectors. For the convetional
PSAS analysis system ’b’ will
contain the innovations (0-F).
However, multiple RHS will be
necessary for implementation
analysis error variances by
randomized trace estimates.

OUTPUT PARAMETERS:

real
integer

SEE ALSO:

stdio.h
LAPACK
BLAS

x(nobs_d,nvecs) ! Solution vectors.
ierr ! error return code. All is well
! if ierr=0.

Include file defining stdandard I/0 units
Linear Algebra PACKage
Basic linear algebra sub-programs

REVISION HISTORY:

03apr93 Pfaendtner Original code

04jun®3
07 jan94
14feb94

Searl Modification for dynamic storage on CRAY
Sienkiewicz Added pass of trig lat/lon to subroutine
da Silva Fixed search direction bug

09apr94 Pfaendtner Added prologue
13apr94 Pfaendtner Added use of libsci routines

030ct94
040ct94

19Jan95

02Feb95

110ct95

Guo

Guo

Guo

da Silva Implemented CRAY specifics with IFDEFs.
da Silva Routine changed name from CONJGR5 to

simply CONJGR. Introduced parameter

nbandmx.

Added wobs tables to pass pindx2() values to
?7cor1() and ?7corx() routines. One could use
rlevs for the same purpose to reduce the over-
head, since rlevs has no real purpose in this
subroutine and subsequent routines.

Changed CRAY to _UNICOS for consistency and

to follow the guide lines.

Summary of changes since 02Feb95:

+ some structural changes for multitasking on
€90, including now handling all regions in
one cg_level2() call.

+ modified to accept multi vectors;

+ replaced multbyC() call to sCxpy() call;

06Feb95 da Silva Revised prologue, and several minor changes

for readability:
o name change: from conjgri() to cg_levell()
o removed static allocation IFDEFs;

53

code now requires Fortran 90 for

portability.

o simplified main loop

o several variable name changes to conform
to notation in Golub and van Loan;
comments are straight quotation from book.

o introduction of f90 assignments whenever

possible.

SOURCE CODE:

character*9 myname
parameter (myname=’cg_levell’)

Local storage (dynamic allocation)

include ’mxpass.h’

real corr(nobs#*(nobs+1)/2)
real corrM(nobs#*(nobs+1)/2)
real corrI(nobs#*(nobs+1)/2)
real x_k(nobs,nvecs)
real r_k(nobs,nvecs)
real z_k(nobs,nvecs)
real p_k(nobs,nvecs)
real Cp_k(nobs,nvecs)
real r_norm(0:mxpass,nvecs)
real zTr_new(nvecs)

real zTr_old

Temporary correlation matrix
Innovation correlation matrix
Inverse of corrM

solution at kth iteration
residual at kth iteration
pre-conditioner at kth iteration
search direction at kth iteration
Correlation matrix * p_k

residual norm

(new)
(01d)

z’ % r
z’ % r

Minor local storage (static allocation)

integer ivec

integer k_max

real tol

integer begin_blk, next_blk, begin_sav
real endqrx

logical next

character*l Mtyp

integer ij

real alpha_k, beta
integer N_diverg

integer k, m, 1, j, kn, km
logical converging

54

logical solved

integer nshift
integer mshift
parameter (mshift=10)
real dshift

parameter (dshift=.1/mshift)

include ’bands.h’ ! Convergence control parameters
include ’stdio.h’ ! standard I/0

include ’realvals.h’ ! machep look-alike

include ’kind_covs.h’ ! kind of covariance matrices
logical setCorF

parameter (setCorF=.true.)

! BLAS functions

real sdot, snrm2
external sdot, snrm2
integer Inblnk, luavail
external Inblnk, luavail

call ZEITBEG (cgname(1))

! Initialization: k=0; x_0=0; r_0=b

n o

k 0.

do ivec=1,nvecs
r_k(1:nobs,ivec)
r_norm(k,ivec) =

end do

kn = 0

k
X_

= b(1:nobs,ivec)
SNRM2(nobs,r_k(1,ivec),1)

! Compute the block matrix corrM to work on

corr = 0
corrl 0.
corrM = 0.
call CG_BLOCKS() ! this an internal routine

55

&

k_max = maxpass(1)

tol = criter(1)

N_diverg = 0

converging = .true.

DO WHILE (converging .and.
k .le. k_max .and.
(r_norm(kn,1)/r_norm(0,1)) .gt. tol)

Preconditioner for level 1 (one region, one kt) is direct
solver on diagonal sub-blocks. It makes sure that
soundings are kept together (group by qr_x)

if(k.eq.1) then
do ivec=1,nvecs
zTr_new(ivec) = SDOT(nobs,r_k(1,ivec),1,z_k(1,ivec),1)
call SCOPY(nobs,z_k(1,ivec),1,p_k(1,ivec),1)
end do

else { beta_k = r_{k-1}"T z_{k-1} / r_{k-1}"T z_{k-2%}
p_k = z_k-1 + \beta_k p_{k-1} }
else
do ivec=1,nvecs
zTr_old = zTr_new(ivec)
zTr_new(ivec) = SDOT(nobs,r_k(1,ivec),1,z_k(1,ivec),1)
beta = zTr_new(ivec) / zTr_old
call SAXPY(nobs,beta,p_k(1,ivec),1,z_k(1,ivec),1)
call SCOPY(nobs,z_k(1,ivec),1,p_k(1,ivec),1)
end do
end if

For each RHS vector

call SSPMV(’U’ ,nobs, 1.,corrM,p_k(1,ivec),1,
0., Cp_k(1,ivec),1)

alpha_k = z_{k-1}"T r_{k-1} / p_k"T q_k

alpha_k = zTr_new(ivec) /
SDOT (nobs,p_k(1,ivec),1,Cp_k(1,ivec),1)

x_k = x_{k-1} + alpha_k p_k

call SAXPY(nobs,+alpha_k, p_k(1,ivec),1,x_k(1,ivec),1)
r_k = r_{k-1} - alpha_k q_k

call SAXPY(nobs,-alpha_k,Cp_k(1,ivec),1,r_k(1,ivec),1)

end do

Residual norm at end of this iteration

km = kn
kn = kn + 1
if (kn .gt. MXPASS) kn = 1 ! cyclic storage

do ivec=1,nvecs
r_norm(kn,ivec) = SNRM2(nobs,r_k(1,ivec),1)
end do

Detect divergence: one iteration is termed 'divergent'" if the
residual increases instead of decreasing. N_diverg
records how many times this happens
if (r_norm(kn,ivec) .ge. r_norm(km,ivec)) then
N_diverg = N_diverg + 1
end if

The CG process is called "divergent" if the number
of divergent iterations exceeds a pre-determined
number (minmax(1))

converging = N_diverg .1t. minmax(1)

END DO ! end of CG iteration

Convergence achieved

if((r_norm(kn,1)/r_norm(0,1)) .le. tol .and. verbose) then
write(stdout,’(2a)’) myname,’: convergence achieved’

Divergence detected

else if (.not. converging .and. verbose) then
write(stdout,’(2a)’) myname,

57

& ’: conjugate gradient is not converging. ’

Maximum number of iterations exceeded

else if (verbose) then
write(stdout,’(2a)’) myname,
& ’: maximum number of iterations exceeded’

end if

Prints summary

if (verbose) then
call CGNORM (myname, criter(l), mxpass, k, nvecs, r_norm, nobs)
end if

Return kth iterate as solution

do ivec=1,nvecs
x(1:nobs,ivec) = x_k(1:nobs,ivec)
end do

All done

call ZEITEND

return

CONTAINS

58

A.8 cg_blocks()

Computes innovation correlation blocks. This is an internal routine of CG_.LEVEL1().

CALLING SEQUENCE:

call cg_blocks()

INPUT PARAMETERS:

none.

OUTPUT PARAMETERS:

None explicitly, but corrM is calculated here.

SEE ALSO:

cg_levell() parent routine.

REVISION HISTORY:

06Feb96 da Silva Moved from body of CG_LEVEL1 for redability.

59

SOURCE CODE:

Mtyp=’2’
if ((kind_cov.and.kind_cov0) .ne.0) then

! Construct spatially correlated observation error correlation
! matrix

call DiagCor0 (kt,nobs,ks,qr_x,qr_y,qr_z,ktab,wtab,
& Mtyp,corr,ierr)

! Error handling

if(ierr.ne.0) then
write(stderr,’(a,2(a,13))’) myname,
& ’: unexpected variable type for diagcor0(), kt = ’,kt,
& ’, lerr =’,jerr
return
end if

If (Mtyp.eq.’U’ .or. Mtyp.eq.’u’) then
do j=1,nobs
ij=j*(j-1)/2
do i=1,]j
corrM(ij+i)=nsig_Oc(i)*corr(ij+i)*nsig 0c(j) + corrM(ij+i)
end do
end do
else if (Mtyp .eq. ’I’ .or. Mtyp .eq. ’i’) then
do j=1,nobs
ij=j*(j+1)/2
corrM(ij)=nsig_Oc(j)*nsig_0c(j) + corrM(ij)
end do
end if

! Construct uncorrelated observation error correlation
call DiagCorU (kt,nobs,ks,ktab,wtab,Mtyp,corr,ierr)
! Error handling
if(ierr.ne.0) then
write(stderr,’(a,2(a,13))’) myname,
& ’: unexpected variable type for diagcorU(), kt = ’,kt,
& ’, lerr =’,jerr

return
end if

60

If(Mtyp.eq.’U’ .or.Mtyp.eq.’u’) then
do j=1,nobs
ij=j*(j-1)/2
do i=1,]j
corrM(ij+i)=nsig_Ou(i)*corr(ij+i)*nsig Ou(j) + corrM(ij+i)
end do
end do
elseif (Mtyp.eq.’I’.or.Mtyp.eq.’1’) then
do j=1,nobs
ij=j*(j+1)/2
corrM(ij)=nsig_Ou(j)*nsig_Ou(j) + corrM(ij)
end do
end if

end if

Mtyp=’2’
if ((kind_cov.and.kind_covF) .ne.0) then

call DiagCorF (kt,nobs,qr_x,qr_y,qr_z,qm_X,qm_y,qm_z,
& ql_x,ql_y,ktab,wtab,
& Mtyp,corr,ierr)

Error handling
if(ierr.ne.0.or.Mtyp.eq.’E’) then
write(stderr,’(a,2(a,13))’) myname,
& ’: unexpected variable type for diagcorF(), kt = ’,kt,
& ’, lerr =’,jerr
return
end if

if (Mtyp.eq.’U’.or.Mtyp.eq.’u’) then
do j=1,nobs
ij=j*(j-1)/2
do i=1,]j
corrM(ij+i)=nsig F(i)*corr(ij+i)#*nsig F(j) + corrM(ij+i)
end do
end do
end if
end if

return

end subroutine CG_BLOCKS

61

A9 cg.levelO()

Implements the pre-conditioner for cg_levell(). The pre-conditioner for level 1 (one region,
one kt) is direct solver on diagonal sub-blocks. It makes sure that soundings are kept
together (group by qrx). This is an internal routine of CG_LEVEL1().

CALLING SEQUENCE:

call cg_levelO()

INPUT PARAMETERS:

none.

OUTPUT PARAMETERS:

None explicitly, but z_k is calculated here.

SEE ALSO:

cg_levell() parent routine.

REVISION HISTORY:

06Feb96 da Silva Moved from body of CG_LEVEL1 for redability.

62

SOURCE CODE:

xR

Make a copy of the current residual
do ivec=1,nvecs

call SCOPY(nobs,r_k(1,ivec),1,z_k(1,ivec),1)
end do

begin_blk =1
begin_sav = 1
DO WHILE (begin_blk .le. nobs)

It (next_blk) is actually the end-of-this-block
next_blk = min(begin_blk+msmall-1,nobs)
endqrx = qr_x(next_blk)

Search for end of this sounding (at end of msmall sized
block) and set block break where soundings change
Tests are made in sequence to avoid qr_x(nobs+1) ever
being referenced.

next=.true.

do while (next)
next_blk = next_blk + 1

next=next_blk.le.nobs
if (next) next=qr_x(next_blk).eq.endqrx
end do

m = next_blk - begin_blk
if(k.eq.1) then

nshift=0
solved=.false.
call smex(corrM,nobs,begin_blk,m,corrI(begin_sav))

do while(.not.solved)
call SPPTRF(’U’,m,corrI(begin_sav),ierr)

if(ierr.ne.0) then

write(stdout,’(a,5(a,i3),a,1i5)’) myname,
’: SPPTRF() error ’,ierr,
’: nshift=’,nshift,
’ region=’,ireg,
’ type=’,kt,
’ msmall=’,m,
> begblk=’,begin_blk

63

nshift=nshift+1
if(nshift.gt.mshift) then
write(stderr,’(a,2(a,i4),a)’) myname,
& . err = ’,ierr,’ in SPPTRF() after ’,nshift,
& ’ tries’
return
end if

call smex(corrM,nobs,begin_blk,m,corrI(begin_sav))
call smexsh(corrI(begin_sav),m,nshift*dshift)

else
solved=.true.
end if ! error
end do ! .not.solved
end if ' k.eq.1
call SPPTRS(’U’ ,m,nvecs,corrI(begin_sav),z_k(begin_blk,1),
& nobs,ierr)
if(ierr.ne.0) then ! if it ever happens.
write(stderr,’(a,2(a,12))’) myname,
& . err = ’,ierr,’ from SPPTRS() with m = ’,m,
& > and begin_blk = ’,begin_blk
return
end if
begin_blk = next_blk
begin_sav = begin_sav+m*(m+1)/2
end do ! next block (starting from begin_blk)?
! All done
Il e m
return

end subroutine CG_LEVELO

end subroutine CG_LEVEL1

64

References

Anderson, E., Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, D. Sorensen, 1992: LAPACK User’s
Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, 235pp.

Cohn, S. E., 1991: New observation processing method. Manuscript, unpublished notes.

Courtier, P., E. Andersson, W. Heckley, G. Kelly, J. Pailleux, F. Rabier, J.-N. Thepaut, P.
Unden, D. Vasiljevic, C. Cardinali, J. Eyre, M. Hamrud, J. Haseler, A. Hollingsworth,
A. Mc Nally, and A. Stoffelen, 1993: Variational Assimilation at ECMWF. ECMWF
Technical Memorandum, No. 194. Reading, England, 84pp.

Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press. New York,
457pp. ISBN 0-521-38215-7.

Gaspari, G. and S. E. Cohn, 1996: Construction of Correlation Functions in Two and
Three Dimensions. DAO Office Note 96-03. Data Assimilation Oddice, Code 910.3,
Goddard Space Flight Center, Greenbelt, MD 20771.

Golub, G. H. and C. F. van Loan, 1989: Matriz Computations, 2nd Edition, The Johns
Hopkins University Press, 642pp.

Guo, J. and A. da Silva, 1995: Computational aspects of Goddard’s Physical-space Sta-
tistical Analysis System (PSAS). Second UNAM-Cray Supercomputing Conference.
Mexico City, Mexico, June 1995.

Parrish, D.F. and J.C. Derber, 1992: The National Meteorlogical Center’s statistical spec-
tral interpolation analysis system. Mon. Wea. Rev., 109, 1747-1763.

Pfaendtner, J., 1996: Notes on the Icosahedral Domain Decomposition in PSAS. DAO
Office Note 96-04. Data Assimilation Oddice, Code 910.3, Goddard Space Flight
Center, Greenbelt, MD 20771.

Pfaendtner, J., S. Bloom, D. Lamich, M. Seablom, M. Sienkiewicz, J. Stobie, A. da Silva,
1995: Documentation of the Goddard Earth Observing System (GEOS) Data Assim-
ilation System—Version 1. NASA Tech. Memo. No. 104606, Vol. 4, Goddard Space
Flight Center, Greenbelt, MD 20771. Available electronically on the World Wide Web
as ftp://dao.gsfc.nasa.gov/pub/tech memos/volume 4.ps.Z

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, 1992: Numerical
recipes in Fortran, Second Ed. Cambridge University Press, New York, USA, 963pp.

Schubert, S.D., R. B. Rood, and J. Pfaendtner, 1993: An assimilated data set for earth
science applications. Bul. Amer. Meteor. Soc., T4, 2331-2342.

Schubert, S., C.-K. Park, Chung-Yu Wu, W. Higgins, Y. Kondratyeva, A. Molod, L. Tkacs,
M. Seablom, and R. Rood, 1995a: A Multiyear Assimilation with the GEOS-1 System:
Overview and Results. NASA Tech. Memo. 104606, Vol. 6. Goddard Space Flight
Center, Greenbelt, MD 20771. Available electronically on the World Wide Web as
ftp://dao.gsfc.nasa.gov/pub/techmemos/volume 6.ps.Z

Schubert, S. D. and R. Rood, 1995b: Proceedings of the Workshop on the GEOS-1 Five-
Year Assimilation. NASA Tech. Memo. 104606, Vol. 7, Goddard Space Flight
Center, Greenbelt, MD 20771. Available electronically on the World Wide Web as
ftp://dao.gsfc.nasa.gov/pub/techmemos/volume 7.ps.Z

65

da Silva, A. and C. Redder, 1995: Documentation of the GEOS/DAS Observation Data
Stream (ODS) Version 1.0. DAO Office Note 95-01.. Data Assimilation Office, God-
dard Space Flight Center, Greenbelt, MD 20771.

da Silva, A., J. Pfaendtner, J. Guo, M. Sienkiewicz and S. E. Cohn, 1995: Assessing the
Effects of Data Selection with DAQ’s Physical-space Statistical Analysis System. In-
ternational Symposium on Assimilation of Observations, Tokyo, Japan, 133-17 March
1995, 273-278.

66

